
Maher Hojorat, † Hassan Al Sabea, † Lucie Norel,†,*† Kevin Bernot,*† Thierry Roisnel, † Frederic Gendron, † Boris Le Guennic, † Elzbieta Trzop, † Eric Collet, † Jeffrey R. Long, ‡§∥,¶ and Stéphane Rigaut †*‡

‡Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) − UMR 6226, F-35000 Rennes, France
§Department of Chemistry and ¶Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
∥Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

ABSTRACT: A one-dimensional coordination solid \(I \) is synthesized by reaction of a bispyridyl dithienylethene (DTE) photochromic unit with the highly anisotropic dysprosium-based single-molecule magnet \([\text{Dy(Tp}^\text{pp})\text{F}-(\text{pyridine})_2]\text{PF}_6\). Slow magnetic relaxation characteristics are retained in the chain compound \(I \), and photoisomerization of the bridging DTE ligand induces a single-crystal-to-single-crystal transformation that can be monitored using photocrystallography. Notably, the resulting chain compound \(I \) exhibits faster low-temperature relaxation than that of \(I \), which is apparent in magnetic hysteresis data collected for both compounds as high as 4 K. Ab initio calculations suggest that this photomodulation of the magnetic relaxation behavior is due to crystal packing changes rather than changes to the crystal field splitting upon ligand isomerization.

INTRODUCTION

Molecules that exhibit slow magnetic relaxation resulting from a bistable magnetic ground state are collectively known as single-molecule magnets, and such systems stand as attractive candidates for next generation information storage schemes. 1,2 Mononuclear single-molecule magnets of the lanthanides are some of the most promising compounds investigated to date, 3–6 and they can exhibit \(U_{\text{eff}} \) values 7–9 exceeding 1000 cm\(^{-1}\) originating from splitting of the ground state by the crystal field, as well as record blocking temperatures. 7–9 Efficient control of their magnetization via an external stimulus—such as electric potential, 10–12 pressure, coordinating solvent, 13 temperature, 14 or light 15 —could considerably increase the scope of applications for these magnetic molecules. Light is particularly intriguing as a tool for this purpose, as it could potentially enable remote and rapid control of magnetic characteristics. The first example of a system exhibiting light-induced on–off switching of single-molecule magnet behavior was the spin-crossover complex \([\text{Fe(pz)\text{z}}_2](\text{BF}_4)_2\) \((\text{pz} = 1\text{-propylpyrazole})\), in which iron(II) converts from a low spin to a high spin configuration under visible light irradiation. 16,17 We are interested in creating similar photoswitching behavior in intrinsically non-photoresponsive mononuclear lanthanide single-molecule magnets, and we have therefore been targeting systems featuring photoactive ligands.

Indeed, given the importance of the coordination environment in dictating magnetic anisotropy and relaxation behavior in 4f systems, successful photo control of ligand structure may provide an efficient handle for external manipulation of these properties. Previous efforts to design magnetic molecules or chains featuring photoswitchable ligands, 8–22 including by some of us, 23,24 revealed a number of challenges inherent to this approach, including lack of photochromism, 20,23 poor reversibility, 22 changes in crystallinity upon irradiation that preclude precise magnetostuctural correlations, 25 and finally, the occurrence of slow relaxation only at very low temperatures and the absence of magnetic hysteresis. 18,24 Here, we present a supramolecular strategy to obtain a photoswitchable chain of lanthanide single-molecule magnets featuring \([\text{Dy(Tp}^\text{pp})\text{F}-(\text{pyridine})_2]\text{PF}_6\) \((\text{Tp}^\text{pp} = \text{tris}(3-(2\text{-pyridyl})\text{pyrazolyl})\text{hydroborate})\) as a building unit. This complex was previously shown to exhibit slow magnetic relaxation at high temperatures as a result of strong axial magnetic anisotropy generated by a short Dy–(\(n\)\(^1\)F) bond. 27

Received: October 7, 2019
Published: December 27, 2019
Exchange of the equatorial pyridine ligands in this compound with a ditopic photoactive bispyridyl dithienylethene (DTE) ligand28 yields infinite chains of single-molecule magnets that undergo a single-crystal-to-single-crystal transformation upon visible irradiation and exhibit unprecedented photomodulation of magnetic hysteresis behavior at temperatures as high as 4 K.

RESULTS AND DISCUSSION

Synthesis and Structural Characterization. In our design of a photoswitchable lanthanide-based molecular magnet, we chose bispyridyl dithienylethene as a linker given that the DTE unit exhibits excellent fatigue resistance in the presence of prolonged light exposure, facile photoisomerization in the solid state, and high isomerization quantum yields.29 In particular, the open form of bispyridyl dithienylethene (\(L_o\)) undergoes UV-light driven photoisomerization to the stable closed isomer (\(L_c\)), and this process is reversible under visible light (Figure 1).28 We obtained the chain compound \([\text{DyF(Tppy)}^+\text{][PF}_6^-]\) by layering a solution of \([\text{DyF(Tppy)}]^+\) and \([\text{F(pyridine)}_2][\text{PF}_6^-]\) in dichloromethane with a particular, the open form of bispyridyl dithienylethene (\(L_o\)) did not result in the formation of any solid material, even after several days.

Compound 1\(_c\) strongly absorbs in the visible range and its absorption spectrum, recorded using a KBr pellet, showed transitions characteristic of the DTE ligand in its closed state, with a broad band centered at \(\lambda_{\text{max}} = 600\) nm (see Figure S2 of the Supporting Information, SI), consistent with that of the free ligand in solution (\(\lambda_{\text{max}} = 592\) nm).28 After white light irradiation, the pellet was totally bleached and only UV transitions below 350 nm were observed. The blue color could be restored upon irradiation with 365 nm light, and the process was reversible over several cycles of bleaching and coloring, with no apparent photodegradation (see Figure S3). Similarly, crystals of 1\(_c\) could be bleached upon white light irradiation, and their blue color was restored upon 365 nm irradiation (Figure 2).

Single-crystal X-ray diffraction characterization of blue 1\(_c\) at 300 K revealed that this compound crystallizes in the monoclinic space group \(P2_1/c\) (Table S1) and is composed of \([\text{DyF(Tppy)}]^+\) units bridged by bidentate \(L_o\) ligands (Figure 3). It also contains large pores, probably filled by dichloromethane molecules that could not be identified and modeled further because of the important disorder within the pores. Importantly, the very short Dy–F bond (2.098(4) Å) is preserved upon exchange of the pyridine ligand with bispyridyl dithienylethene, and each dysprosium ion is nine-coordinate with a coordination sphere best described as a spherical capped square antiprism,30 very similar to that of the parent mononuclear compound (Tables S2 and S3). The DTE linker in 1\(_c\) shows geometrical features typical of the closed isomer, and the existence of two enantiomers with opposite configurations of the chiral carbons leads to crystallographic disorder in the central ring.

Photocrystallography. Irradiation of a single crystal of 1\(_c\) with green light (532 nm, 4 mW-mm\(^{-2}\)) resulted in a color change from dark blue to colorless (Figure 4, inset) and variation of the unit cell parameters resulting in an overall volume increase (Table S1). A photocrystalline state corresponding to a fully bleached crystal was reached after 4...
promotes further ring opening. This response to light excitation is in contrast to that of more conventional spin crossover materials, in which each absorbed photon switches an isolated molecule and the lattice packing has a less pronounced effect on photoinduced transformation. As noted above, isomerization of \(\text{I}_o \) in the single crystal is shown to be much less efficient than isomerization of \(\text{I}_o \), which could be a result of a more favorable packing rearrangement in the open form. For example, stabilizing intermolecular contacts between the fluorine and sulfur atoms of the DTE unit and one pyridylpyrazolyl arm might render photocyclization more difficult to achieve (Figure S9). Although DTE isomerization in single crystals is known, to our knowledge compound \(\text{I}_1 \) is one of only a few examples of compounds exhibiting a full transformation between open and closed states, which enables accurate crystal structure determination and magneto-structural correlations.

Ab Initio Calculations. We sought to further investigate the structural differences between compounds \(\text{I}_1 \) and \(\text{I}_o \) given that changes to the dysprosium coordination sphere can affect the molecular ground state crystal field splitting (and consequently the magnetic relaxation barrier and other mechanisms of slow relaxation), while changes in Dy···Dy distances can impact dipolar interactions. Analysis of \(\text{I}_1 \) and \(\text{I}_o \) using the continuous shape measures approach (see Table S3) revealed that the dysprosium coordination spheres can be described as approximate capped square antiprisms, with minor variations between them. Ab initio calculations supported this analysis (Figure S21) and revealed that, relative to the parent molecular complex, the short Dy–F bond remains largely unaffected in both chain compounds, as does the energy splitting of the \(J = 15/2 \) ground state and the nearly perfect axial \(M_{\text{eff}} \pm 15/2 \) ground Kramers doublet (Table S13). Closer inspection of the extended structures of \(\text{I}_1 \) and \(\text{I}_o \) revealed three characteristic Dy···Dy distances, identified in Figure S10 as \(d_1 \), \(d_2 \), and \(d_3 \), corresponding to nearest and next-nearest interchain dysprosium neighbors and nearest-neighbor intrachain dysprosium ions, respectively. Upon conversion from \(\text{I}_1 \) to \(\text{I}_o \), the most significant changes occur for \(d_1 \) (~11.2 → 11.7 Å) and \(d_3 \) (~18.9 → 19.4 Å). Calculated dipolar coupling constants \(J^{\text{Dy}} \) indicate that antiferromagnetic interactions occur between dysprosium ions related by \(d_1 \), and ferromagnetic interactions occur between dysprosium ions related by \(d_2 \) and \(d_3 \), although the individual constants are all small in magnitude and differ only slightly between compounds (Table S14).

Influence of Photoisomerization on the Magnetic Properties. Static (dc) and dynamic (ac) magnetization data were collected for a microcrystalline pellet of \(\text{I}_o \) to evaluate whether slow magnetic relaxation persists in this system upon ligand exchange and coordination polymer formation when compared with \(\text{[Dy(Tpp)F(pyridine) 2]} \text{PF_6} \). The molar magnetic susceptibility—temperature product \((\chi_T) \) for \(\text{I}_1 \) at 298 K is 13.94 emu K mol\(^{-1} \) (Figure S11), slightly larger than the value of 13.64 emu K mol\(^{-1} \) for \(\text{[Dy(Tpp)F(pyridine) 2]} \text{PF_6} \) and in good agreement with the predicted value of 14.17 emu K mol\(^{-1} \) for an isolated Dy\(^{3+} \) ion \((\chi_1 \) 936, Tables S13). A magnetic susceptibility data revealed that \(\text{I}_1 \) indeed exhibits slow magnetic relaxation under zero applied dc field (\(H_0 = 3 \text{ Oe, 1–1500 Hz, Figures S15–S18} \)), with clear peaks in the out-of-phase susceptibility \(\chi'' \) as high as 44 K (c.f. 40 K for \(\text{[Dy(Tpp)F(pyridine) 2]} \text{PF_6} \)). Fits of the ac susceptibility data using a generalized Debye equation (Figure S20) provide...
relaxation becomes temperature independent for both compounds, indicating quantum tunneling of the magnetization, while at higher temperatures there is more pronounced curvature in the data, suggesting a competition between Raman and Orbach magnetic relaxation processes on I_{1o} as observed for $[\text{Dy(Tp)}^3\text{F}(\text{pyridine})]_2\text{PF}_6$. These relaxation data can be fit using eq 1:

$$\tau^{-1} = BT^n + \tau_0^{-1}\exp\left(-U_{\text{eff}}/k_B T\right) + \tau_{\text{tunnel}}^{-1}$$

(1)

which includes terms for Raman relaxation (B is the Raman constant) and quantum tunneling of the magnetization, in addition to Orbach relaxation. To avoid overparameterization, we fit the relaxation times above 35 K assuming purely Orbach relaxation. For I_{1o} we found $U_{\text{eff}} = 157 \text{ cm}^{-1}$ ($\tau_0 = 7.7 \times 10^{-7} \text{ s}$), half the value previously determined for $[\text{Dy(Tp)}^3\text{F}(\text{pyridine})]_2\text{PF}_6$ (336 cm$^{-1}$). The full temperature range (2–44 K) is fit with the Orbach parameters fixed in eq 1 that affords $B = 3.05 \text{ s}^{-1} \text{K}^{-n}$, $n = 1.53$ and $\tau_{\text{tunnel}} = 0.0337 \text{ s}$.

Similarly, comprehensive magnetic data were collected for a sample of I_{1o} to further investigate the effects of ligand isomerization on the dysprosium slow magnetic relaxation behavior. The sample of I_{1o} was obtained from continuous white light irradiation of crystals of I_1 over 30 h, until they were completely colorless (Figure S4). Overall, the magnetic behavior of I_{1o} is very similar to that of I_1, and reminiscent of $[\text{Dy(Tp)}^3\text{F}(\text{pyridine})]_2\text{PF}_6$, thus only major features and relevant differences are detailed below (see the SI for complete magnetic analysis of I_{1o} and I_1). Analogous to I_{1o}, chain I_{1o} exhibits slow magnetic relaxation under zero dc field up to 44 K (Figures S15–S18). The same fitting procedure as the one for compound I_{1o} was used, and we fit the relaxation times for I_{1o} above 35 K assuming purely Orbach relaxation, which yielded the same values of U_{eff} (157 cm$^{-1}$) and $\tau_0 = (7.7 \times 10^{-7})$ s. The most striking effect of the photoswitching between compounds is seen for the τ_{tunnel} value, which decreases from 0.0337 s for I_1 to 0.0015 s for I_{1o}. Quantum tunneling is partially suppressed for both compounds under an optimal applied field of 1200 Oe (Figures 5 and S14), although data collected under this field indicate that magnetic relaxation remains faster for I_{1o} than for I_1 in the temperature range slower relaxation for I_1 relative to I_{1o} could be due to differences in dipolar or spin-phonon coupling in each compound. For example, while the energy level splitting within $J = 15/2$ is essentially the same for both chains, ab initio calculations indicate that subtle changes in the crystal packing induce a slightly stronger nearest-neighbor dipolar coupling in I_{1o} than in I_1 (vide supra). Unfortunately, attempts at site dilution in both chains using YIII, LaIII, or LuIII ions were unsuccessful, precluding efforts to examine the effects of dipolar interactions in these materials. We note that changes to the bridging ligand and molecular packing upon conversion from I_1 to I_{1o} may also influence the phonon bath and give rise to differences in spin-phonon coupling that manifest as differences in the magnetic hysteresis data.$^{[6,37]}$ Finally, the structure being porous, reorganization of the solvent molecules within the pores could change slightly the electrostatic potential felt by the magnetic centers and affect the slow relaxation, an hypothesis that we cannot evaluate further since XRD data do not allow a precise identification and location of these solvent molecules.

CONCLUSIONS

We have demonstrated an effective and generalizable synthetic approach to organize air-stable and highly anisotropic complexes, featuring short Dy–(η2-F) bonds, into a one-dimensional coordination solid, I_1, built up using photoactive DTE-based bridging ligands. Single-crystal-to-single-crystal photoisomerization of I_1 results in formation of I_{1o} featuring the open form of the DTE bridges. Both chain compounds exhibit slow magnetic relaxation with very similar behavior at high temperatures, reminiscent of the parent mononuclear complex. Below 5 K, differences in magnetic hysteresis behavior are clear for I_1 and I_{1o} and can likely be ascribed to subtle differences in dipolar and spin-phonon coupling interactions. This work marks the first example of successful
photomodulation of magnetic hysteresis behavior in a lanthanide-based system, and we are currently seeking to maximize this photomodulation effect through crystal engineering.

ASSOCIATED CONTENT

- Supporting Information
 - The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.9b10584.
 - Crystallographic data for Iₐ (CIF)
 - Crystallographic data for Iₐ (CIF)
 - Experimental details for synthesis, single crystal XRD study, magnetic measurements, and theoretical calculations (PDF)

AUTHOR INFORMATION

Corresponding Authors

Lucie Norel: lucie.norel@univ-rennes1.fr
Kevin Bernot: kevin.bernot@insa-rennes.fr

ORCID

Lucie Norel: 0000-0001-6654-1211
Kevin Bernot: 0000-0001-8337-6246

Funding

This project received funding from the European Union’s Horizon 2020 research and innovation program (Marie Curie grant agreement N° 800719). We thank the Université de Rennes 1 and the CNRS. K.B. acknowledges the Institut Universitaire de France (IUF). B.L.G. and F.G. thank the French GENCI/IDRIS-CINES centers for high-performance computing resources. F.G. acknowledges Région Bretagne for a SAD Grant. J.R.L. was supported under NSF grant CHE-1464841.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Dr. K. R. Meihaus for editorial assistance.

REFERENCES

